生物制药在医学界已经迅速崛起,而且大有方兴未艾之势。这些救命药物对许多疾病都有很好的疗效,而且副作用小,去年实现了超过 2750 亿美元的全球收入。1但是,制造这些生物分子并非易事。它们在不断进化,结构复杂,带来了一系列同样复杂的操作和技术挑战。为了应对这些挑战并取得长期的制造成功,建立优化的生产工艺和结果非常重要。
在本文中,我们探讨了如何通过各种关键环节、不同的战略方法以及创新的工具和方法,提高生物工艺工作流程的性能和稳健性,从而改善工艺结果。为了成功进行优化,管理流程的团队必须熟悉流程的各个要素,以及如何增强这些要素来获得更好的结果。例如,简化操作、优化滴度和产量、评估细胞系和细胞培养基以及控制原材料可变性等,这些在获得高度纯化、安全、有效和具有成本效益的产物中起着举足轻重的作用。
简化工艺操作,以实现无缝工作流程
工艺工作流中的每个步骤之间应能够轻松切换,而不必进行耗时的调整。为此要优化连接,减少人工互动,最大程度地减少人为错误——可将简单的人工步骤自动化,如调整 pH 值、稀释/浓缩样品和容器间转移。此外,促进工艺开发和生物制造之间的技术顺利转移将确保批次变化最小,改善工作流的运行速度和连续性。通过这种方式,精简操作可以提高速度、稳健性、效率和一致性。
高滴度与高收率
滴度和收率是评估产品产量的两个不同的指标。滴度是生物反应器总液体体积中的粗蛋白质量(通常以克/升计),而收率是最终纯化的相关蛋白与表达的总蛋白的质量比。2因此,滴度表征的是上游生物工艺效率,而收率表示的是下游生物工艺效率。尽管高滴度通常表明制备的所需产品数量更多,但是如果目标分子没有在上游得到有效表达,并且存在许多杂质,则下游产率将很低。
例如,如果滴度是 5 g/L,但是如果收率为 50%,则工艺效率不高。特别在类似药领域,为了获得监管部门的批准,产品的电荷变体特征应与原始分子的电荷变体特征高度匹配。在大多数情况下,虽然滴度很高,但电荷变体杂质会明显降低纯化过程中的收率。另一方面,如果表达系统有效并且收率很高 (>90%),即使滴度为 3 g/L,纯化产品的数量仍可能较高。因此,这里的关键因素不是滴度或收率,而是所需分子的正确表达。为此,拥有最合适的细胞系和培养基,能够最大程度地减少杂质并有效地产生正确的产品,对于改善工艺结果至关重要。
细胞系和细胞培养基是关键
生物制药界普遍认为,如果细胞系不对,那么就将永远无法获得强大而高效的生物工艺。一切都建立在细胞上,事实上,细胞就是合成产品的实际“工厂”。因此,选择一个能够高收率和高生产率地产生目标生物分子的细胞系,是细胞培养工艺开发中至关重要的第一步。然后,应该用高性能的细胞培养基来培养细胞,并优化生物反应器的培养条件和操作模式。这些措施不仅将最大限度地提高细胞生产率,提高产品质量/一致性,还能降低运营成本。3
上图 :一位科学家在进行小规模细胞培养工作
利用平台方式支持快速工艺开发,实现稳健结果。
采用平台方式的常见做法是重复利用专业知识,从而提高工艺开发的速度和可预测性。这是使药物开发和生产标准化的一个好方法。平台方式依赖于通用或标准化平台和预定义的方案。利用平台可以建立一个框架,框架可以根据需要针对不同的分子进行一些调整,但基本上执行相同的通用步骤。对于需要生产和纯化相似类型分子的客户而言,这种方法很方便。借助标准的操作程序和核对清单,以及通用设备和原材料,平台方式能提供稳健的结果,并且可以确保一定系列的分子达到一定的性能水平(相似的收率、纯度等)。
质量源于设计与深入了解工艺的必要性
监管机构要求制造商全面了解自己的工艺,并预测所有结果,不管此类评估需要花费多少时间。本质上,质量源于设计 (QbD) 是一个完整的事件链,由合格的患者安全和药物疗效的结果驱动,并且追溯性地定义制造过程中的关键质量属性和关键工艺参数。QbD 方法有助于整合产品开发的各个方面——从小型到大型的连续工艺,旨在提高收率的同时,保持最终产品的纯度和安全性。这需要深入地了解工艺和每个步骤的作用,以生产出优质产品。
图 3. 生物制药工艺开发的 QbD 方法
改善工艺结果并确保商业化生产取得成功的最好方法是设计稳健、有效和经济的工艺。为此,必须仔细研究工艺的每个步骤,以确定改进的目标领域,特别是当工艺在开发后期变得更大、更昂贵时。建议对工艺开发采用基于风险的策略,重点关注具有最大失败风险的领域。随着分子多样性的增加,越来越需要了解关键工艺参数 (CPP) 和关键材料属性 (CMA) 之间的相互关系。
原材料可能包括从细胞培养基到化学添加剂再到层析填料,可能会造成生产偏差。原材料的可变性可能对最终产品的质量和一致性产生重大影响,而且往往在开发的后期阶段可能难以找到根本原因。4可变性导致的问题可能出现在细胞培养或发酵步骤的上游,也可能出现在纯化的下游。例如,层析填料的可变性可能与工艺参数相互作用(取决于分子),并导致产量损失、冗长的批次调查和故障排除,甚至批次拒收。制造商和供应商必须立即解决这些问题,以了解、监测和控制原材料在整个生物制药价值链(从原材料供应商到患者)中的可变性。
图 4. 工艺参数和填料属性之间的相互作用可能导致工艺变化
改善纯化工艺的现代工具和方法
有许多工具和技术可帮助生物制药厂实现工艺的稳健性或改善结果。下面是一些侧重于改善纯化方法以获得更好结果的方案:
- 工艺表征套件
这些套件通过帮助研究填料配基密度可能对工艺结果产生的潜在影响,帮助你更深入地了解层析工艺。借助工艺表征套件,制造商可以获得关于填料变化的关键见解,并制定可靠的控制策略,以获得稳健和可扩展的下游层析工艺。 - 病毒清除验证层析柱
尽管病毒清除是生物制品生产中的一个重要步骤,但进行准确且具有成本效益的病毒清除研究可能具有一定的挑战性。提高此类研究稳健性的一个很好的建议是使用预装填的、内径较窄的缩小型层析柱。5验证层析柱就是这个为了可重复的工艺验证和工艺开发而设计的产品。验证层析柱在效率和不对称性方面可确保较高的层析柱间一致性。这类层析柱的尺寸较小,生物制造中使用的验证层析柱内径通常是 10 mm,柱床高度为 20 cm,因此特别适合执行可靠的小规模病毒清除研究。 - 增强型层析填料
最近开发的一些层析填料可以大大提高工艺结果。例如,MabSelect PrismA 蛋白 A 亲和层析填料在纯化包括双特异性抗体在内的抗体方面,表现出更高的耐碱稳定性和高动态结合载量。即使在非常苛刻的清洗条件下(0.5-1.0 M 氢氧化钠),MabSelect PrismA 也很稳定,长期来看对填料载量没有影响。这有助于提高对连续工艺的生物负荷控制,而连续工艺可能暴露数天或数周(进料收获时)。 - 层析法机理建模
机理建模可以通过使用计算机模拟来减少所需的层析实验次数,从而帮助改善工艺结果,加快工艺开发。例如,该方法使用了微分方程,用于描述分子如何在填料珠之间和珠孔内部移动。机理建模已被用于学术研究,但现在我们看到生物制药行业也在采用这种技术,用于指导工艺表征工作,并帮助将层析柱从实验室规模放大到工艺规模。
结论
总体而言,必须牢记工艺理解是工艺开发的基石。除了平衡滴度和纯度以及优化细胞培养外,制造商必须研究和了解工艺参数和原料可变性之间的相互作用是如何影响工艺结果的。从而可以定义和实现工艺参数目标,以确保实现稳健的工艺性能。
扩展阅读
参考文献:
1Morrow, K. J., Langer, E. S. A Biopharma Year In Review — And A Look Ahead To 2020. Biosimilar Development (2019).
2Rader, R. A., Langer, E. S. 30 Years of Upstream Productivity Improvements.BioProcess International (2015).
3Li, F., Vijayasankaran, N., Shen, A. et al. Cell culture processes for monoclonal antibody production.mAbs (2010), 2(5): 466–477.
4Chalk, S. Raw Material Variability.BioPharm International (2014), 27 (4).
5Troeng, L. Viral clearance: 7 chromatography column considerations.Cytiva Blog (2019)